INTRODUCTION

The Human Motion Detection Video Recorder project is a python script utilizes OpenCV and
YOLOvV3 , a deep learning-based object detection model , to detect human motion in a live
video feed. It captures video from a specified source (like a phone’s camera ) , identifies
humans using YOLOvV3 , and draws bounding boxes around detected individuals . When a
human is detected , it enters recording mode , saving a video clip of the detected motion . Upon
motion cessation , it processes the recorded clip , and removes the original temporary file .
The script runs until the user exits , offering real-time human motion monitoring and recording

capabilities .

OBJECTIVE

The objective of this Python script Project is to perform real-time human motion detection
using YOLOv3 and OpenCV . it aims to identify and track humans in a live video feed
automatically , making their presence with bounding boxes . Additionally , it provides
functionality to record video clips of detected motion , creating a comprehensive system for

monitoring and analysing human movement in a given environment .




ALGORITHM DESIGN

1. Initialization and setup :
e Load YOLOv3 model with weights and configuration.
¢ Read class names for COCO dataset.
e Define paths and setting for Droid Cam connection and background image.
2. Video Capture and Preprocessing :
e Initialize video capture (from Droid Cam or other source).
e Check successful video stream opening.
e Set dimensions for the camera feed.
e Load and resize the background image.
3. Main Loop :
e Continuously read frames from the video feed.
e Preprocess frames as blobs for YOLOv3 input.
e Perform forward pass through the network to obtain output layers.
e Detect humans within the frame based on YOLOv3 predictions.
e Track detected humans by drawing bounding boxes around them.
e Display the video feed with bounding boxes and a marker when humans are
detected.
4. Recording and Processing :
e When a human is detected :
Initiate recording if not already recording.
Save the recorded clip as an AV file.
e Upon motion cessation :
Stop recording and release the video writer.
Read the recorded clip, adjust its speed, and save it as a slowed-down
MP4 file.
Remove the original recorded clip.
5. User Interaction :
e Check for the 'q' key to exit the loop and close the video windows.
6. Cleanup:

e Release the video capture and close all OpenCV windows.




TECHNOLOGY USED

. OpenCV (cv2): Used for video capture, frame processing, drawing bounding boxes,
and displaying video streams.

. YOLOvV3: A deep learning-based object detection model utilized for identifying and
localizing humans within the video feed.

. Numpy: Used for numerical computations and array manipulations, particularly for
handling data within the YOLOv3 model.

. MoviePy: Employed for video manipulation tasks like adjusting playback speed
(slowing down the recorded footage).

. Operating System Interaction (0s): Used for managing files and handling temporary

video recordings.

WORKING METHODS

Initialization and Setup :
e cv2.dnn.readNet: Loads YOLOv3 model with weights and configuration.
e open: Reads class names for COCO dataset.
e Setting up paths, configurations, and video sources.

. Video Processing and Detection :

cv2.VideoCapture: Initializes video capture from the specified source
(DroidCam or other device).

e video.read(): Reads frames from the video feed.

e Preprocessing frames using YOLOv3 requirements (cv2.dnn.blobFromIimage).
e Forward pass through the YOLOv3 network to detect humans in the frame.

e Drawing bounding boxes around detected humans using OpenCV functions.




3. Recording and Processing :

Start and stop video recording when human presence is detected or motion

ceases.

Using cv2.VideoWriter, saves the recorded clip as an AV file.

Read the recorded clip with VideoFileClip from MoviePy for speed adjustment.
Adjust playback speed and save the slowed-down video using write_videofile.

Remove the original recorded clip using os.remove after speed adjustment.

4. User Interaction :

Check for user input (‘'q" key) to exit the loop and terminate the program.

Displays the processed video stream and bounding boxes in OpenCV windows.

5. Cleanup:

Release the video capture (video.release()) and close all OpenCV windows

(cv2.destroyAllWindows()).




PROJECT SCREEN SHOTS

i @J ~ ) T
HUMAN MOTION

Detection

FUTURE SCOPE

1. Improved Object Detection :

e Implement more advanced object detection models beyond YOLOv3 for
increased accuracy and efficiency.

e Explore models trained specifically for human detection to enhance precision
in identifying human movements.

2. Real-Time Analytics :

e Integrate analytics to extract data from detected motions, such as counting the
number of individuals, analysing movement patterns, or estimating crowd
density.

3. Multi-Camera Support :
e Extend functionality to support multiple cameras or video sources, enabling

surveillance of larger areas or complex environments.




4. Smart Alerts and Notifications:

e Implement a system to trigger alerts or notifications when specific movements

or events are detected, enhancing its use for security or monitoring purposes.
5. Integration with Al Assistants:

e Integrate with Al assistants or voice recognition systems to enable voice-

controlled commands for starting/stopping recording or adjusting settings.
6. Cloud Integration and Storage:

e Allow seamless integration with cloud storage platforms for storing recorded

videos or facilitating remote access to footage.
7. Enhanced User Interface:

e Develop a user-friendly graphical interface providing control over settings,

playback, and viewing of recorded footage.
8. Machine Learning for Motion Pattern Analysis:

e Employ machine learning algorithms to analyse recorded footage for pattern
recognition, anomaly detection, or predictive modelling based on observed
motion behaviours.

9. Optimized Performance:

e Focus on optimizing code for faster processing and real-time performance,
especially for high-resolution video feeds or computationally intensive
operations.

10. Compatibility and Portability:
e Ensure compatibility across various platforms and devices, making it easily

deployable and usable across different hardware configurations.




CONCLUSION

The Python script showcases real-time human motion detection using YOLOv3 and OpenCV,
enabling video capture, identification of human presence, and recording of detected motion.
With potential enhancements in analytics, multi-camera support, smart alerts, and improved
interfaces, it holds promise for broader applications in security, analytics, and smart
environments. Continued development could transform it into a versatile tool for

comprehensive motion analysis and surveillance.

REFERENCES

¢ YouTube: https://www.youtube.com/

s Google: https://www.google.com/




