
1

INTRODUCTION

The Human Motion Detection Video Recorder project is a python script utilizes OpenCV and

YOLOv3 , a deep learning-based object detection model , to detect human motion in a live

video feed. It captures video from a specified source (like a phone’s camera) , identifies

humans using YOLOv3 , and draws bounding boxes around detected individuals . When a

human is detected , it enters recording mode , saving a video clip of the detected motion . Upon

motion cessation , it processes the recorded clip , and removes the original temporary file .

The script runs until the user exits , offering real-time human motion monitoring and recording

capabilities .

OBJECTIVE

The objective of this Python script Project is to perform real-time human motion detection

using YOLOv3 and OpenCV . it aims to identify and track humans in a live video feed

automatically , making their presence with bounding boxes . Additionally , it provides

functionality to record video clips of detected motion , creating a comprehensive system for

monitoring and analysing human movement in a given environment .

2

 ALGORITHM DESIGN

1. Initialization and setup :

• Load YOLOv3 model with weights and configuration.

• Read class names for COCO dataset.

• Define paths and setting for Droid Cam connection and background image.

2. Video Capture and Preprocessing :

• Initialize video capture (from Droid Cam or other source).

• Check successful video stream opening.

• Set dimensions for the camera feed.

• Load and resize the background image.

3. Main Loop :

• Continuously read frames from the video feed.

• Preprocess frames as blobs for YOLOv3 input.

• Perform forward pass through the network to obtain output layers.

• Detect humans within the frame based on YOLOv3 predictions.

• Track detected humans by drawing bounding boxes around them.

• Display the video feed with bounding boxes and a marker when humans are

detected.

4. Recording and Processing :

• When a human is detected :

Initiate recording if not already recording.

Save the recorded clip as an AVI file.

• Upon motion cessation :

Stop recording and release the video writer.

Read the recorded clip, adjust its speed, and save it as a slowed-down

MP4 file.

Remove the original recorded clip.

5. User Interaction :

• Check for the 'q' key to exit the loop and close the video windows.

6. Cleanup :

• Release the video capture and close all OpenCV windows.

3

TECHNOLOGY USED

1. OpenCV (cv2): Used for video capture, frame processing, drawing bounding boxes,

and displaying video streams.

2. YOLOv3: A deep learning-based object detection model utilized for identifying and

localizing humans within the video feed.

3. Numpy: Used for numerical computations and array manipulations, particularly for

handling data within the YOLOv3 model.

4. MoviePy: Employed for video manipulation tasks like adjusting playback speed

(slowing down the recorded footage).

5. Operating System Interaction (os): Used for managing files and handling temporary

video recordings.

WORKING METHODS

1. Initialization and Setup :

• cv2.dnn.readNet: Loads YOLOv3 model with weights and configuration.

• open: Reads class names for COCO dataset.

• Setting up paths, configurations, and video sources.

2. Video Processing and Detection :

• cv2.VideoCapture: Initializes video capture from the specified source

(DroidCam or other device).

• video.read(): Reads frames from the video feed.

• Preprocessing frames using YOLOv3 requirements (cv2.dnn.blobFromImage).

• Forward pass through the YOLOv3 network to detect humans in the frame.

• Drawing bounding boxes around detected humans using OpenCV functions.

4

3. Recording and Processing :

• Start and stop video recording when human presence is detected or motion

ceases.

• Using cv2.VideoWriter, saves the recorded clip as an AVI file.

• Read the recorded clip with VideoFileClip from MoviePy for speed adjustment.

• Adjust playback speed and save the slowed-down video using write_videofile.

• Remove the original recorded clip using os.remove after speed adjustment.

4. User Interaction :

• Check for user input ('q' key) to exit the loop and terminate the program.

• Displays the processed video stream and bounding boxes in OpenCV windows.

5. Cleanup :

• Release the video capture (video.release()) and close all OpenCV windows

(cv2.destroyAllWindows()).

5

PROJECT SCREEN SHOTS

FUTURE SCOPE

1. Improved Object Detection :

• Implement more advanced object detection models beyond YOLOv3 for

increased accuracy and efficiency.

• Explore models trained specifically for human detection to enhance precision

in identifying human movements.

2. Real-Time Analytics :

• Integrate analytics to extract data from detected motions, such as counting the

number of individuals, analysing movement patterns, or estimating crowd

density.

3. Multi-Camera Support :

• Extend functionality to support multiple cameras or video sources, enabling

surveillance of larger areas or complex environments.

6

4. Smart Alerts and Notifications:

• Implement a system to trigger alerts or notifications when specific movements

or events are detected, enhancing its use for security or monitoring purposes.

5. Integration with AI Assistants:

• Integrate with AI assistants or voice recognition systems to enable voice-

controlled commands for starting/stopping recording or adjusting settings.

6. Cloud Integration and Storage:

• Allow seamless integration with cloud storage platforms for storing recorded

videos or facilitating remote access to footage.

7. Enhanced User Interface:

• Develop a user-friendly graphical interface providing control over settings,

playback, and viewing of recorded footage.

8. Machine Learning for Motion Pattern Analysis:

• Employ machine learning algorithms to analyse recorded footage for pattern

recognition, anomaly detection, or predictive modelling based on observed

motion behaviours.

9. Optimized Performance:

• Focus on optimizing code for faster processing and real-time performance,

especially for high-resolution video feeds or computationally intensive

operations.

10. Compatibility and Portability:

• Ensure compatibility across various platforms and devices, making it easily

deployable and usable across different hardware configurations.

7

CONCLUSION

The Python script showcases real-time human motion detection using YOLOv3 and OpenCV,

enabling video capture, identification of human presence, and recording of detected motion.

With potential enhancements in analytics, multi-camera support, smart alerts, and improved

interfaces, it holds promise for broader applications in security, analytics, and smart

environments. Continued development could transform it into a versatile tool for

comprehensive motion analysis and surveillance.

REFERENCES

❖ YouTube: https://www.youtube.com/

❖ Google: https://www.google.com/

